Search results for "Ray transforms"

showing 6 items of 6 documents

Coherent Quantum Tomography

2016

We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…

FOS: Physical sciences01 natural sciencesMatrix (mathematics)neutrino physics0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsStatistical physics0101 mathematics010306 general physicsQuantumMathematical PhysicsMathematicsQuantum Physicsinverse problemsgeophysicsApplied Mathematicsta111quantum mechanics010102 general mathematicsMathematical analysisTime evolutionweighted ray transformsMathematical Physics (math-ph)81Q99 81V99 86A22 44A12Inverse problemQuantum tomographyInjective functionComputational MathematicsMathematics - Classical Analysis and ODEsTomographyNeutrinoQuantum Physics (quant-ph)AnalysisSIAM Journal on Mathematical Analysis
researchProduct

On Radon Transforms on Tori

2014

We show injectivity of the X-ray transform and the $d$-plane Radon transform for distributions on the $n$-torus, lowering the regularity assumption in the recent work by Abouelaz and Rouvi\`ere. We also show solenoidal injectivity of the X-ray transform on the $n$-torus for tensor fields of any order, allowing the tensors to have distribution valued coefficients. These imply new injectivity results for the periodic broken ray transform on cubes of any dimension.

Mathematics - Differential GeometryAstrophysics::High Energy Astrophysical PhenomenaGeneral Mathematicschemistry.chemical_elementRadoninversio-ongelmatTensor fieldray transformsMathematics - Analysis of PDEs46F12 44A12 53A45Dimension (vector space)FOS: MathematicsMathematicsgeometric opticsSolenoidal vector fieldRadon transformApplied MathematicsMathematical analysisOrder (ring theory)TorusFourier analysisDistribution (mathematics)Differential Geometry (math.DG)chemistryAnalysisAnalysis of PDEs (math.AP)
researchProduct

X-ray transforms in pseudo-Riemannian geometry

2016

We study the problem of recovering a function on a pseudo-Riemannian manifold from its integrals over all null geodesics in three geometries: pseudo-Riemannian products of Riemannian manifolds, Minkowski spaces and tori. We give proofs of uniqueness anc characterize non-uniqueness in different settings. Reconstruction is sometimes possible if the signature $(n_1,n_2)$ satisfies $n_1\geq1$ and $n_2\geq2$ or vice versa and always when $n_1,n_2\geq2$. The proofs are based on a Pestov identity adapted to null geodesics (product manifolds) and Fourier analysis (other geometries). The problem in a Minkowski space of any signature is a special case of recovering a function in a Euclidean space fro…

Mathematics - Differential GeometryPure mathematicsGeodesic44A12 53C50 11D09Riemannian geometry01 natural sciencespseudo-Riemannian manifoldsinversio-ongelmatsymbols.namesakeray transformsMathematics - Analysis of PDEsMinkowski spaceFOS: Mathematics0101 mathematicsMathematicsEuclidean space010102 general mathematicsNull (mathematics)Manifold010101 applied mathematicsnull geodesicsDifferential Geometry (math.DG)Differential geometryProduct (mathematics)symbolsGeometry and TopologyMathematics::Differential GeometryAnalysis of PDEs (math.AP)
researchProduct

On Radon transforms on compact Lie groups

2016

We show that the Radon transform related to closed geodesics is injective on a Lie group if and only if the connected components are not homeomorphic to $S^1$ nor to $S^3$. This is true for both smooth functions and distributions. The key ingredients of the proof are finding totally geodesic tori and realizing the Radon transform as a family of symmetric operators indexed by nontrivial homomorphisms from $S^1$.

Mathematics - Differential GeometryPure mathematicsGeodesicGeneral MathematicsGroup Theory (math.GR)inversio-ongelmatsymbols.namesake46F12 44A12 22C05 22E30FOS: MathematicsRepresentation Theory (math.RT)MathematicsRadon transformLie groupsinverse problemsApplied Mathematicsta111Lie groupTorusInverse problemInjective functionFourier analysisDifferential Geometry (math.DG)Fourier analysissymbolsRay transformsHomomorphismMathematics - Group TheoryMathematics - Representation Theory
researchProduct

The X-Ray Transform for Connections in Negative Curvature

2016

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

Mathematics - Differential GeometryPure mathematicsHermitian bundlesGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Connection (vector bundle)Boundary (topology)Dynamical Systems (math.DS)X-ray transforms01 natural sciencesinversio-ongelmatHiggs fieldsTensor fieldMathematics - Analysis of PDEsFOS: MathematicsSectional curvatureMathematics - Dynamical Systems0101 mathematicsmath.APMathematical PhysicsPhysicsX-ray transformParallel transport010102 general mathematicsStatistical and Nonlinear Physicsconnections010101 applied mathematicsHiggs fieldmath.DGDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometrymath.DSAnalysis of PDEs (math.AP)[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Communications in Mathematical Physics
researchProduct

Unique continuation results for certain generalized ray transforms of symmetric tensor fields

2022

Let $I_{m}$ denote the Euclidean ray transform acting on compactly supported symmetric $m$-tensor field distributions $f$, and $I_{m}^{*}$ be its formal $L^2$ adjoint. We study a unique continuation result for the normal operator $N_{m}=I_{m}^{*}I_{m}$. More precisely, we show that if $N_{m}$ vanishes to infinite order at a point $x_0$ and if the Saint-Venant operator $W$ acting on $f$ vanishes on an open set containing $x_0$, then $f$ is a potential tensor field. This generalizes two recent works of Ilmavirta and M\"onkk\"onen who proved such unique continuation results for the ray transform of functions and vector fields/1-forms. One of the main contributions of this work is identifying t…

integraaliyhtälötosittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsSaint-Venant operatortomografiaFOS: MathematicsUCP for ray transformstensor tomographyGeometry and Topologyfunktionaalianalyysiinversio-ongelmatsymmetric tensor fieldsAnalysis of PDEs (math.AP)
researchProduct